Vector-valued non-homogeneous Tb theorem on metric measure spaces
نویسندگان
چکیده
منابع مشابه
Tb-theorem on non-homogeneous spaces
0 Introduction: main objects and results 3 0.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.2 An application of T1-heorem: electric intensity capacity . . . . . . . . . . . . 7 0.3 How to interpret Calderón–Zygmund operator T? . . . . . . . . . . . . . . . 9 0.3.1 Bilinear form is defined on Lipschitz functions . . . . . . . . . . . . . 10 0.3.2 Bilin...
متن کاملFractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces
*Correspondence: [email protected] College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, People’s Republic of China Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integralMβ ,ρ ,q on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the a...
متن کاملError Bounds for Vector-valued Functions on Metric Spaces
In this paper, we attempt to extend the definition and existing local error bound criteria to vector-valued functions, or more generally, to functions taking values in a normed linear space. Some new primal space derivative-like objects – slopes – are introduced and a classification scheme of error bound criteria is presented.
متن کاملCommutators of Multilinear Singular Integral Operators on Non-homogeneous Metric Measure Spaces
Abstract. Let (X, d, μ) be a metric measure space satisfying both the geometrically doubling and the upper doubling measure conditions, which is called nonhomogeneous metric measure space. In this paper, via a sharp maximal operator, the boundedness of commutators generated by multilinear singular integral with RBMO(μ) function on non-homogeneous metric measure spaces in m-multiple Lebesgue spa...
متن کاملA New Approach to Caristi's Fixed Point Theorem on Non-Archimedean Fuzzy Metric Spaces
In the present paper, we give a new approach to Caristi's fixed pointtheorem on non-Archimedean fuzzy metric spaces. For this we define anordinary metric $d$ using the non-Archimedean fuzzy metric $M$ on a nonemptyset $X$ and we establish some relationship between $(X,d)$ and $(X,M,ast )$%. Hence, we prove our result by considering the original Caristi's fixedpoint theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Iberoamericana
سال: 2012
ISSN: 0213-2230
DOI: 10.4171/rmi/699